Космос и космология. Высший Космос, Фундаментальная картина мира, духовная революция в мировоззрении, время, пространство, Вселенная
 


COSMOS-H.RU

Нецелая размерность времени и пространства

Размерность времени и пространства

 

  Обычное наше пространство трёхмерно, его размерность равна 3 - целому числу. А размерность времени равна 1. Однако профессор В.Ю.Колосков высказал предположение, что размерность реального пространства могла бы немного отличаться от целочисленного значения, превосходя значение 3 на незначительну величину так что это не представлялось бы даже возможным без специальных сложных экспериментов определить... А размерность времени могла бы быть меньше 1, тоже на незначительную величину...

Размерность пространства во Вселенной - величина переменная и нецелая?

Проблемы нецелой размерности пространства становятся предметом интенсивных исследований, которые находят применение и в физике. С одной стороны, имеются в виду фрактально-подобные случайные поверхности, с другой – формализм дифференциального и интегрального исчисления дробного порядка, который используется в теориях физических полей. Проведенные многими авторами исследования показали важность понятия нецелой размерности прежде всего на микроуровне. Последовательная постановка вопроса требует также изучения следствий возможного отклонения размерности от целочисленного значения в глобальных масштабах Вселенной.

В 1988 году профессором В.Ю.Колосковым было предложено описание пространств с нецелой размерностью, являющихся аналитическим расширением обычных Евклидовых пространств и обладающих классическими топологическими и метрическими свойствами. Топология таких пространств индуцируется специальным метрическим выражением. В настоящее время исследованы метрические и топологические свойства таких пространств, построен аппарат интегро-дифференциального исчисления. Рассмотрены также две возможности гладкой зависимости размерности от положения в пространстве и от измельчения, то есть от используемых масштабов.

Такие пространства используются в физических моделях пространства-времени. Так, техника Салама-Cтратди для моделей типа Калуцы-Клейна с групповыми многообразиями также может быть обобщена на случай произвольной размерности. С другой стороны, был предложен альтернативный компактификационной схеме Калуцы-Клейна механизм описания гравитационного электромагнитного и Янг-Миллсовского взаимодействий, основанный на использовании пространств, размерность которых равна 4 на наблюдаемых (обычное пространство-время) и 4+К на Планковских масштабах. При этом, вообще говоря, компактификация дополнительных измерений может не иметь места, поскольку происходит плавное изменение размерности от 4 до 4+К с изменением масштаба.

Такой механизм позволяет получить более реалистичные спектры масс частиц и содержит больше возможностей. Ещё один возможный класс теорий – модели гравитационного типа, основанные на геометрии пространств с размерностями, гладко меняющимися от точки к точке. При этом объекты связности и кривизны аналогичны объектам Римановой геометрии, что позволяет строить модели. Описывающие те же физические эффекты, что и современные гравитационные подходы. Очевидно, физическая интерпретация таких моделей будет существенно отличаться от классических предсказаний по крайней мере в случае сильных полей и больших отклонений от целого числа измерений.

В конце 80-х годов профессор Колосков выдвинул гипотезу, согласно которой размерность нашего пространства не является целым числом, а, меняясь от точки к точке, на самом деле несколько больше числа 3, и разница может стать заметной вблизи массивных звёзд. Такой подход приводит к предположению, что, может быть, даже Солнце и звёзды излучают свет и тепло именно вследствие небольшого увеличения размерности в областях их расположения, делающего вещество нестабильным. Поэтому, с одной стороны, ускоряются реакции термоядерного синтеза в звёздах, и с другой – происходит распад вещества, сопровождающийся интенсивным выделением света и энергии.

Д.Д. Иваненко о размерности пространства и работах В.Ю. Колоскова

"... интересные работы В.Ю. Колоскова по установлению новых геометрий нецелой размерности, важных еще и с точки зрения физических приложений и теории гравитации; в том числе и неевклидовых геометрий." (Д.Д.Иваненко, 1993)

"Идеи В.Ю. Колоскова о пространствах необычной размерности в его статье, со своей стороны, приводят к интересным вариантам допущения нестандартных Вселенных, притом также эволюционирующих во времени. В первой его статье сообщается о построении обобщения евклидовых пространств на область нецелой размерности, и затем строится концепция новых пространств с размерностью, зависящей от положения, что является, фактически, новой реализацией идей Лобачевского о неевклидовости геометрии. Такие обобщения геометрии представляют большой интерес и с точки зрения физических приложений: в настоящее время актуальна проблема возможности отклонений размерности от первоначального, целого значения, в том числе незначительных, в сильных физических полях; независимо в локальном и глобальном масштабах. В следующей работе В.Ю.Колоскова обсуждается построенная им гравитационно-подобная модель, которая, возможно, могла бы оказаться важной при описании гравитации. Эта модель основана на использовании псевдоевклидова многообразия, размерности пространства и времени которого могут меняться в зависимости от положения." (Д.Д.Иваненко, 1993)

"Традиционно важное значение имеют исследования в области тяготения; особый интерес представляют, наряду с нашей калибровочной трактовкой, модели тяготения с пространствами нецелых размерностей (см. ряд публикаций в данном журнале (журнал "Специальные Исследования Пространства" - Прим. Ред.) с 1991 года): размерность меняется при перемещении по пространству, и вследствие того, что размерность пространства (и времени) вблизи планет не такая, как в удалении от них, планеты притягиваются друг к другу и притягивают лучи звезд. Возможно также, что такие модели сделают более понятными механизмы звездного излучения: при значениях размерности, достаточно отличающихся от обычного, частицы, скорее всего, нестабильны. С точки зрения космологии, по-видимому, Вселенная неявляется однородной плазмой, но состоит из недавно обнаруженных групп Галактик." (Д.Д.Иваненко, (1994)

Имеет ли время размерность меньше 1?

Исследовать время, постичь его природу и смысл, разгадать многие его тайны - вот мечта многих учёных, самые сильные и талантливые из которых не случайно проводили своё время в поисках ответа на вопрос - А что же такое время на самом деле?

Теория В.Ю.Колоскова указывает вполне определённо, что размерность времени вблизи массивных тел отлична от 1 в сторону уменьшения, то есть размерность времени... оказывается на самом деле меньше, чем 1!

Сегодня здесь остаётся множество загадок, много нерешённых проблем. Но в любом случае понятно, что уменьшение размерности времени в сторону нецелочисленного значения ни в коей мере не обедняет время. Напротив, это бы означало, что для описания времени потребовалось бы весомое множество параметров-координат, что в дальнейшем могло бы привести к открытию новых фантастических и чрезвычайно интересных свойств и приоткрыло бы для нас многие новые тайны феномена времени.

   
Репетитор по математике на facebook
   
Репетитор по математике в twitter
   
Репетитор по математике - видео в Youtube
   
Репетитор по математике в контакте
   
Репетитор по математике на одноклассниках
   
Репетитор по математике в instagram
   
Репетитор по математике в Pinterest
 
     

© 2004–2019 KOCMOC.info, h-cosmos.ru, "Белка", cosmos-h.ru, kosmos-k.ru,
© 2020-2025. cosmos-h.ru, Академия Исследований Пространства.